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How we could improve E906 to accommodate  
dark photon search
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• New Geant4-based simulation package 
➢ significantly improved performance on 

minimum-bias simulation
➢ updated sensitivity estimation for prompt/

displaced A’ search
➢ current/future trigger detector R&D

• Data acquisition (DAQ) system upgrade



Dark Photon Simulation (DPSim)

3Kun Liu, David Kleinjan

• Hosted on github (https://github.com/liukDPSim), and being used by 
outside collaborators (Argonne, Rutgers, UIUC, etc…)

• Also intended to replace the existing E906/E1039 simulation package

• Main features:

➢ implemented various dark photon/higgs generator models from 
our theory colleagues and from Pythia8

➢ simple interface to adjust the detector setup for detector/trigger 
R&D

➢ ultra-fast minimum-bias MC simulation for trigger optimization

https://github.com/liukDPSim


Ultra-fast minimum-bias MC simulation
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• A large minimum-biased MC of pp collision is needed: 
➢ study and optimize the trigger performance 
➢ understand the beam-rate induced systematic uncertainties

• At E906, ~1E12 protons are delivered to our spectrometer every second 
• Current MC package for E906 takes 44M CPU hours to simulate one second 

worth of data 
➢ it cannot make full use of the grid computing resources, because of the limited I/O 

bandwidth
➢ current trigger rate estimation has huge uncertainties
➢ detector occupancy/trigger rate estimation is more than one magnitude smaller than data

• In the new MC: 
➢ IO is completely re-written so that it can run on 

grid (Fermi and Open Science)
➢ introduced a new layer between generation and 

detector simulation to cut the useless events, single 
core performance improved by a factor of 350

➢ tuned the physics process to agree with data as 
much as possible

Single muon trigger rate: 
estimation vs. E906 data



Application I: updated sensitivity reach
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2-yr of running, with 
and without the 
additional EMCal

• With full detector simulation and theory model inputs
• Cross-checked with external collaborators
• More “dark signatures” (dark higgs, multiple resonance, “pT broadening”, etc.) beyond 

the original proposal are being considered and simulated



Application II: trigger R&D and optimization
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Avg. RawMATRIX1 per spill

Case 1
Original

Case 2
𝞵/𝜋 separation

Forward:	1cm
Backward:	1cm

Forward:	1cm
Backward:	2cm

Forward:	2cm
Backward:	2cm

E906

Choice of the forward/backward vertex trigger 
scintillator size, and how it compares with the 

current E906 vertex resolution 

St1 St2

Single muon z-vtx resolution Incorporation options: 
Case 1: use EMCal to replace the absorber
Case II: insert EMCal between H3 and absorber 
(will need to slightly adjust station-3 position)



DAQ Upgrade: current status and opportunities

7Kun Liu, Suyin Grass Wang, Xinkun Chu, with the help from Dave Christian, Jinyuan Wu, Terry Kiper at Fermilab

SeaQuest

In every minute:  
• beam delivered to SeaQuest in the first 4.2s
• for the rest of the minute, beam is directed 

to neutrino experiments and SeaQuest just 
sits idle

Once a detector channel is fired, its timing is 
measured by our VME-based Time to Digital 
Convertor (TDC): 
• the board design is equipped with FPGA, ARM, 

cache and large memory storage
• currently only FPGA is utilized, and data is sent to 

central event builder through VME back plane 
(very time-consuming)

• For a typical event, the DAQ dead time is ~150𝞵s, 
which limits the data rate to 1~1.5kHz

We need at least a factor of 10x DAQ bandwidth run ‘parasitically’



TDC readout chain and bottleneck
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Hit

• Incoming hit timing is measured by a 9-phase delay line

• Data from a group of 4 channels are temporarily stored in a circular 
buffer to wait for the trigger

• When trigger arrives, the hits (within pre-defined time window) in the 
circular buffer are pushed to the event buffer through the 4-by-4 
pipeline. This copy process takes a fixed amount of clock cycles 
proportional to the number of time slots and pipeline stages. (copy-in-
progress time)

• The event buffer is mapped to the VME address space, which is read 
out sequentially (~250 ns per hit)

At E906: 
• Time window needs to be as 

large as 2𝞵s: 32 𝞵s CIP time
• A typical event has ~500 hits 

in the busiest readout crate: 
~120 𝞵s VME transfer time

• Everything happens in the 
4.2s beam on time

time window

Storage



Elimination of the data-transfer time
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32Kx32bit 
dual-port
memory

• The hits in event buffer are duplicated in 
the onboard dual-port memory

• Instead of reading event buffer through 
VME bus (250 ns per hit), events in dual-
port memory is read by ARM and saved in 
SDRAM (20+20 ns per hit)

• Dual-port memory is large enough to 
host 16 events at the same time, so that 
we don’t need to wait for ARM reading.

• Similar to event buffer, the dual-port 
memory is mapped to VME bus as well, so 
that we could read the data back (and 
suppress the zeros) when the beam is off.64MB 

SDRAM

⥯ARM

This process completely removes the dead 
time caused by event-by-event VME transfer



Copy-in-progress time reduction
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Intermediate layer of data packing: 
• encode the channel information into 

compressed bits
• associate the timing information with 

compressed channel info

Directly map the 16-channel group 
to the event buffer 
• instead of 4 pipeline push, each 16-

channel group directly writes to the 
event buffer

• the data is re-aligned and zero-
suppressed by ARM

CIP time reduced by a 
factor of 4!

32 𝞵s ➱ 8 𝞵s



Current progress
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• two full-functional DAQ/trigger 
test stands were set up at 
Fermilab and LANL, for onsite/
local tests

• all the development and stress 
tests were carried out locally at 
LANL

• Kun is now at Fermilab for the 
final integration and real system 
test

• New system ready before next 
run (in 2 weeks)

Fermilab test stand

LANL test stand

➢ immediately brings 2x DY and 10x J/𝟁 
to E906 and all future physics programs 

➢enable us to run parasitically alongside 
the main physics programs



Summary
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In addition to the newly proposed vertex trigger, we also greatly 
improved the existing infrastructure to benefit both current and 
future experiments:  

• a brand new MC simulation program to facilitate: 
➢ detector R&D
➢ trigger optimization
➢ sensitivity estimation of various models as well as 

understanding of the systematics

• 15x faster DAQ system with only the existing hardware

Thank you!


